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The interaction energy between two hydrogen molecules near the van der Waals minimum is 
computed as the sum of the SCF interaction energy of the supermolecule and the so-called "Hartree- 
Fock dispersion energy". The most stable configuration is the perpendicular planar one (T configura- 
tion), this configuration being stable through the first order term. The energy averaged over the four 
configurations is in agreement with the available experimental data. The perturbative polarization 
energy is negligible near the van der Waals minimum but it seems that the charge transfer energy must 
be taken into account. 
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1. Introduction 

Though the H 4 system at large and intermediate distances has often been 
studied, f rom a theoretical as well as from an experimental point of  view, the 
difficulties encountered in such studies are far f rom being overcome. Two important  

�9 books [1, 2] provide an exhaustive review of the work published before 1969. 
Further  references can be found in papers [3-5] and, in the course of  the last two 
years, other studies concerning this subject have been published [6-11]. The five 
last ones use ab initio functions with different degrees of  accuracy: Ref, [9] gives 
the leading term of  the dispersion energy computed with a large basis set; Refs. 
[7, 8, 11] correspond to more complete treatments using a medium size [7] and 
a small [8, 11] basis set respectively. Ref. [10] studies the effect of  the basis set 
on the SCF supermolecule energy [10a] and corrects it by the use of  the function 
counterpoise method with the view of treating such problems with small basis 
sets [ 10b]. 

A comparison between all these results emphasizes a rather dangerous fact: 
good values can often be due to cancellation of  errors and offer no real guarantees 
of  reliability. Thus the average energy is similar in Refs. [1, 2, 3, 11, 12] whereas 
the energy of each configuration is rather different. Such cancellation can also 
occur, for one configuration, between the first order electrostatic and exchange 
terms [13]. As shown by Urban and Hobza  [10a] small basis sets underestimate 
the repulsive energy in the first order term (corresponding to the first iteration of 
the supermolecule treatment) and overestimate the attractive part  corresponding 
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to the polarization and charge-transfer energies (E 2 in Ref. [10]). This explains 
why the neglect of E 2 partially cancels the underestimation of E 1 in [3]. 

In the present paper, the total intermolecular energy between two hydrogen 
molecules near the van der Waals minimum is computed as the sum of the SCF 
interaction energy of the supermolecule and the so-called "Hartree-Fock disper- 
sion energy". A rather large basis set is used, with 6 s and 4 p uncontracted gaus- 
sian functions. This basis set has been previously [ 14] determined for the treatment 
of Li + +H2, one diffuse p function being added to Lester's basis set [15] with 
the view of improving the description of the dispersion energy. The SCF results 
published by Urban and Hobza [10a] with basis IX in the case of the linear 
configuration are very close to our own present values. 

2. First Order Term 

In the case of Li + +H2 and H 2 + H  2 we have shown [13] that the first order 
term of the perturbation series is equivalent to the first iteration of the super- 
molecule treatment starting from Schmidt orthogonalized molecular vectors under 
two conditions: 

(a) large basis sets must be used 
(b) the charge-overlap effect must be included in the perturbative treatment. 

We call E~ the difference between the first iteration of the calculations and the 
SCF energy of the isolated molecules. As seen in [13], E~ is less sensitive to the 
basis set than the perturbative term. Thus, we think that Ef  computed with our 
basis (64) [643 (Table 1) also gives a good description of the perturbative term. 
We can see that the T configuration is stable through the first order term. We have 
shown in Ref. [ 13] that this is due to the electrostatic part, which is in good agree- 
ment with Buckingham's idea that the quadrupole-quadrupole interaction favours 
the stability of this configuration [16]. The most repulsive configuration is the 
linear one. The other two configurations are almost equivalent, the rectangular 
one being slightly more repulsive than the non planar one. 

A comparison with the results published by Urban and Hobza [10] shows that 
E 1 is systematically too repulsive when small basis sets are used [10a]. The cor- 
rected energy E) is significantly improved [10b], though still too small with 
basis VI. The "basis set superposition error" being one of the great difficulties in 
the treatment of such problems E17, 18], the function counterpoise method cor- 
rection could also be of help with large basis sets to determine the accuracy of the 
results. 

3. Polarization and Charge Transfer Terms 

The two terms Ep~ol+CT and Er 1 can be compared in Table 1. E~ol+cT is the 
difference between the SCF energy of the supersystem and the energy of the first 
iteration of the calculation starting from Schmidt orthogonalized molecular 
vectors. It is commonly considered that this term corresponds to polarization and 
charge transfer energy. It is called E 2 in Ref. rl0a], the corresponding corrected 
term being E 2 in Ref. E10b]. In contrast with E 2 which is very bad with basis VI, 
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Table 1. Intermolecular energies between two hydrogen molecules near the van der Waals minimum. 
Basis (64) [64] 2 -energies in I0 4 hartree 

Configuration d (a,u.) E~ E~ot+c'r Epo~ E~.'~ ~vp EroT 

(1) 5 18.623 -1.764 -0.099 -7.674 9.185 
rectangular (I 9.054) 

5,5 7.914 -0,667 -0.022 -4.547 2.700 
6 3.405 - 0,238 - 0.009 - 2,671 0.496 
6,5 1.523 -0,121 -0.006 -1,734 -0.332 

(1.610) 
7 0.724 -0,062 -0.004 - l . [ 1 5  -0.453 
7.5 0.388 -0,070 -0.002 -0,734 -0.416 

10 0.070 -0,037 - 0.000 -0,127 -0.095 

(2) 5 38.580 - 9,339 - 2.475 - 16,534 12.706 
linear (39.316) 

5,5 16.618 -3,504 -0.810 -9.566 3.548 
6 7.377 -1,319 -0.283 -5.660 0.398 
6.5 3.445 -0,487 -0.108 -3,428 -0.470 

(3.638) 
7 1,731 -0 . t99  -0.047 -2.[30 -0.598 
7,5 0.966 - 0 ,090  -0.023 - 1,358 -0.482 

10 0.167 -0,009 -0.002 -0,208 -0.050 

(3) 5 21.091 -4,291 -0.650 - 10.642 6.158 
T conf. (21.712) 

5,5 8.052 - 1 ,584  -0.205 -6.243 0.225 
6 2.844 -0,585 -0.074 -3.757 -1.498 
6.5 0.850 -0,205 -0.031 -2,320 -1.675 

(0.966) 
7 0.I38 -0.082 - [?.015 - 1,470 - 1,414 
7.5 -0.093 -0.036 -0.008 -0.982 -1.111 

10 -0.054 -0,006 -0.001 -0,149 -0.209 

(4) 5 17,477 -1,769 -0.119 -7.068 8,640 
non planar (17.911) 

5,5 7.222 -0s  -0,027 -4.226 2.312 
6 2.976 -0,288 -0,009 -2.596 0.092 
6,5 1.128 -0,129 -0,005 - 1,636 -0.537 

(1.282) 
7 0,525 - 0,088 -- 0,003 - 1.057 - 0,620 
7,5 0.232 -0,072 0,002 -0,700 -0.540 

10 0.033 -0.038 -0.000 -0,123 -0.118 

a Basis (64) [64] has 6 s and 4 p uncontracted gaussian functions. The values in parentheses are the first 
order energies computed from a perturbative procedure including the charge overlap effect [11, 13]. 

E 2 is ve ry  c lose  to  o u r  o w n  va lues ,  t h o u g h  s l ight ly  s m a l l e r  in m a g n i t u d e .  A s  w i t h  

E~ ,  E~ is p r o b a b l y  n o t  t o t a l l y  c o r r e c t e d ,  Bu t  b e c a u s e  l a rge r  bas i s  sets  t e n d  to  

d e c r e a s e  E~ot+Cz it is n o t  p o s s i b l e  to  d e t e r m i n e  i f  E~ z is u n d e r e s t i m a t e d .  N e v e r -  

the les s  E 2 a n d  E~ot+cx are  c lose  e n o u g h  to  a l l ow i n t e r p r e t a t i o n .  T a b l e  1 s h o w s  
A 

t h a t  th is  t e r m  Epot+CT is n o t  neg l ig ib le  at  t he  a v e r a g e  v a n  d e r  W a a l s  m i n i m u m  

d i s t a n c e  ( a r o u n d  d =  6.5 a.u.) .  A t  s l ight ly  s h o r t e r  d i s t a n c e s  it c a n  e v e n  be  l a rge r  

t h a n  the  t o t a l  e n e r g y  ( d =  6 a.u.  in c o n f i g u r a t i o n s  (2) a n d  (4);  d =  5.5 a .u.  in  c o n -  

f i g u r a t i o n  (3)), b u t  a t  still  sma l l e r  d i s t a n c e s  it b e c o m e s  less i m p o r t a n t .  So we  c a n  

see t h a t  an  a c c u r a t e  d e t e r m i n a t i o n  o f  t he  v a n  d e r  W a a l s  m i n i m u m  n e e d s  an  
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accurate evaluation of this term in this region. A comparison of the four con- 
figurations shows that, as with E~, configuration (1) and (4) have a similar 
behaviour. The polarization and charge-transfer energy in these cases is less 
important than in the T configuration, the largest contribution occurring in the 
linear case. As with the dispersion energy [3], the relative importance of EAoI§ 
in the four configurations varies in the same way as the separation between the 
two nearest atoms. 

Whereas E~o~+CT includes both polarization and charge-transfer terms, Epo~ 
allows us to study the polarization energy,alone. This term is computed using a 
double perturbation scheme and an Epstein-Nesbet partition of the molecular 
hamiltonians [14]. The charge-overlap effect is not taken into account. The in- 
fluence of this on the induction energy has been studied only for H~- [19a] or 
two hydrogen atoms [20]. The case of two hydrogen atoms is probably of no 
help in our present studies because the atoms have no permanent dipole or quad- 
rupole moment. They provide no induction energy in the multipole expansion 
approximation while the calculations of ChaIasinski and Jesiorski [20] exhibit an 
attractive induction energy. In H~- the multipole expansion approximation pro- 
vides an overestimation of the induction energy [19a]. This repulsiye charge over- 
lap effect is also seen in the first order term [13] and the dispersion energy [11, 19, 
20a, 21]. In Li § +Ha, the comparison between Ep~ol+CT and Epo I had led us to 
conclude that the charge transfer energy was negligible and Epol Overestimated at 
intermediate distances [14]. From all these results, we think that Epol is also over- 
estimated at intermediate distances in the present studies. In these conditions, even 
if Ep~o~ + CT is somewhat overestimated by an effect of the basis set, Table 1 shows 
that EAo~+CT is mainly due to the charge transfer energy. As with Epaol+CT, the 
largest values of Epol occur for the linear configuration, then for the T shape, and 
finally for the configurations (1) and (4) which are equivalent. 

A more detailed study of the polarization energy shows that only two kinds of 
orbitals in the polarized molecule can provide some contribution: either t h e  
a o orbitals, or some orbitals oriented along the intermolecular axes. Thus, with 
an intermolecular axis along y ,  a polarized molecule oriented in this direction 
provides some polarization energy through its ag and a u orbitals, while a molecule 
perpendicular to this axis provides some contribution through its a o and zcyu 
orbitals. All these orbitals have a non zero electronic density along the inter- 
molecular axis and can contribute to the component of the polarizability along 
this axis. These same groups of orbitals ag, a~ or go,  ~ are also components of 
the SCF orbitals of the supermolecule treatment where both the polarization and 
the charge transfer energies are taken into account. 

An analysis of Epo 1 for the T configuration shows that the orientation of the 
polarizing molecule is more important than the orientation of the polarized mole- 
cule. Thus, at d= 6.5 a.u., the molecule along the intermolecular axes polarized 
by the molecule perpendicular to this axis provides Epol,  1 = - - 0 . 0 0 6 8  x 10-4 har- 
tree, whereas the molecule perpendicular to this axis polarized by the molecule 
along this axis provides Epo~,2 =-0 .0242 x 10 -4 hartree. More generally, the 
polarization energy is Iarger when the polarizing molecule lies along the inter- 
molecular axis. 
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4. Dispersion Energy 

The "Hartree-Fock dispersion energy" E~Vp has previously been studied in 
the four configurations using a double perturbation scheme and an Epstein- 
Nesbet partition of the molecular hamiltonians [3]. Our present work differs only 
by the use of  a larger basis set. This involves a quantitative increase of 5-10~ with 
respect to the results obtained with basis B3 in Ref. [3] (10~o is reached near the 
van der Waals minimum in configurations (1), (3) and (4)). The small basis A3 
(a double zeta s plus one diffuse p function [3]) provides at least 85~o of the 
present results obtained with uncontracted 6 s and 4 p functions. Apart from this 
quantitative difference, the other conclusions are identical. We briefly recall them: 

(a) 

(b) 

(c) 

The most attractive energy occurs in the linear configuration, then in the 
T shape and finally in configuration (1) and (4) which are almost equivalent 
((1) being slightly more attractive than (4)). As we said previously, this behav- 
iour could be related to the distance between the two nearest atoms. 

Some virtual orbitals are of special importance: the occupied ag orbital 
in H2 can be associated with virtual orbitals of the type a,  or n, ,  which provide 
an important contribution to the dispersion energy if they have a large co- 
efficient corresponding to diffuse functions. 

Each pair of  such orbitals in one molecule (%, a,  or %, n,) interacts with 
similar pairs in the other molecule, the interaction being stronger when these 
orbitals have some of their direction along the intermolecular axis. The analy- 
sis of  these contributions has been given for the four configurations at d =  5 a.u. 
using basis A3 (Table IV in Ref. [3] and Figs. 3 and 4 in Ref. [22]). In order 
to recall the main contributions, we define n,• and n, Ih as the n, orbitals per- 
pendicular or parallel to the intermolecular axis and (ab, cd) as molecular 
orbitals a and b on the first molecule, c and d on the second one. 

In the rectangular configuration the total dispersion energy is -7 .108  x 
10 .4  hartree; -2 .891 x 10 -4 is due to (o-oTZull, o-07Zll); -- 1.960 x 10 - 4  to (ago,, 
aga,) and -0 .876  x 10 -4 to (aon,l , %n,• 

In the linear configuration, the total dispersion energy is -15.038 x 10 -4 
hartree, with -8 .844  x 10-4 due to (aga,, %a,) and - 1.109 x 10-4 to each of 
the two groups (aon,l , %nu• the n,• being parallel in molecules 1 and 2. 

In the T configuration where the first molecule is along the intermolecular 
axis the total dispersion energy is -9 .622  x 10 - 4  hartree; -4 .306  x 10 . 4  is 
due to (aoa ., agn, ll), - 1.423 x 10 -4 to (agn,• age,) this n.• being in the plane 
of  the molecules, and -0 .983  x 10 -4 to (aon.l, agn,• these two n,• being 
perpendicular to the plane of the molecules. 

In the non planar configuration the total dispersion is -6 .448  x 10 -4 
hartree, -2 .883  x 10 -4 being due to (aon,i I, agnull), -1 .268  x 10 -4 to (aga,, 
aon,• ) and - 1.268 x 10-4 to (aon,• aga,). 

The present work shows that the energy of the virtual orbitals providing a sig- 
nificant contribution to the dispersion energy is lower than 5.70 hartree. 
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5. Total Energy 

The total energy ETO T is computed as the sum of E~, Epol+CTZl and Edisp.HF The 
stability of the configurations decreases in the order (3), (4), (2), (1) as in Ref. [3], 
the depth of the minimum in the T configuration ( -  1.675 • 10 -4 hartree at 
d--6.5 a.u.) being much more attractive than in the others (-0.620,  -0.598 and 
-0.439 x 10-4 at d =  7 a.u.). We can ask the question: is there one component of 
the total energy which particularly favours the T configuration ? We have seen 
that this configuration is stable through the first order term, the stability being due 
to the electrostatic energy [ 13, 16]. But the study of the first order term alone does 
not explain why the minima of the other three configurations lie in the same range 
of energies when d =  7 a.u. whereas the depth of the minimum of the T shape 
reaches - 1 .675x  10 -4 hartree at d=6.5 a.u. A quantitative analysis of the 
results (Table 1) shows that, around the van der Waals minima, ~ Hv E 1 and E~isp are of 
the same order of magnitude but with opposite sign in configurations (1), (2)and 
(4). On the contrary, in configuration (3), the dispersion energy does not need to 
compensate an important repulsive term. Thus we can say that it is the first order 
term which favours the T shape. 

The present treatment is limited to the calculation of a few terms' E~ is equiva- 
lent to the first order term of a perturbation series including the charge-overlap 
effect [13]; E~ol+Ca- should correspond to the second-order charge-transfer and 
polarization terms; in Ea~sV_p the charge-overlap effect and the exchange terms are 
neglected. 

A previous study performed with a small basis set [11] gave qualitative infor- 
mation about these two last points (accurate results would need a large basis set). 
The effect of the overlap being more sensitive in (3) than in (4) the relative stability 
of (3) may slightly decrease but probably not significantly. For the same reason, 
configuration (1) may become slightly more stable than configuration (2). 

Up to nowl no accurate information is available about the effect of the intra- 
molecular electronic correlation on the dispersion terms and of the higher order 
terms for the case of two hydrogen molecules. It is reasonable to think that these 
effects are small [8, 23]. More accurate determination would be necessary in the 
region of the van der Waals minimum. Nevertheless, as the experimental results 
provide only an average energy, theoretical calculations, even approximate, are 
needed to study each configuration and to give a good picture of the phenomena. 

6. Average Energy 

As in Ref. [3] the energy is averaged over the four configurations using Evctt 
and Margenau's procedure [12]. Table 2 shows the contribution of each con- 
figuration to the average energy. Both the depth of the minimum and the value of 
the coefficient in the average lead to the T configuration providing the main part 
of the energy ( -0 .695 x 10 -4 hartree for an average energy of -0 .952•  10 -4 
hartree). On the contrary the linear configuration only improves the accuracy of 
the calculation near the van der Waals minimum but becomes more important in 
the repulsive part. 
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Table 2. Intermolecular energies between two hydrogen molecules near the van der Waals minimum: 
average of the energy over the four configurations (in 10 -4 hartree) 

Contribution to the average 
configuration Average over 

d the four exp a exp b exp c 
(1) (2) (3) (4) configurations 

5 2.30 1.08 2.55 2.16 8.09 7.203 (10.8) (15.0) 
5.5 0.68 0.30 0.09 0.58 1.65 0.184 1.78 (3.0) 
6 0.12 0.03 -0 .62  0.02 -0 .44  -1 .110 -0 .65  -0 .41 
6.5 -0 .08  -0 .04  -0 .69  -0 .13  -0 .95  -1.103 -1 .08  -1 .10  
7 -0 .11 -0 .05  -0 .59  -0 .15  -0 .90  -0 .864 -0 .93  -0 .98  
7.5 -0 .10  -0 .04  -0 .46  -0 .13  -0 .64  -0 .634 -0 .70  -0 .75  

10 -0 .02  -0 .00  -0 .09  -0 .03  -0 .130 -0 .125 -0.125 

a from Refs. [2] and [24]. 
b from Ref. [25]. 
c from Ref. [5]. 

The values given in the two last columns (cases b and c) have been 
interpolated from the results published in Refs. [25] and [5]; 
the values in parenthesis can be strongly in error. 

Our averaged values are compared with some experimental data (Table 2). 
Besides the earliest work [2, 24] which gives a depth minimum of 1.110 x 10 -4 
hartree around d =  6 a.u., three other recent papers provide - 1.064 x 10-4 hartree 
at d=6.614 a.u. [25], - 1 . 1 0 l  x 10 -4 hartree at d=6.595 a.u. [5] and -1 .139  x 
10 -4 hartree at 6.463 a.u. [4]. Our minimum is somewhat smaller than all these 
results, whereas our curve is less repulsive than the last three determinations at 
short distances. Near the van der Waals minimum, the curve obtained by Toennies 
et aI. is the most repulsive one, as can be seen from their diagrams [4]. To comple- 
ment their comparison, Table 2 provides some values interpolated from the 
results of Dondi et al. [25] and of Farrar  et al. [5] (such numerical results are not 
available for the work of Toennies et al.). 

To conclude this work we should consider two main points of  interest: 

(a) concerning the problem of H2 + H2, only a theoretical treatment can provide 
information about each configuration. Our present work is more rigorous than 
Ref. [3] since a larger basis set is used and the charge-transfer and polariza- 
tion energies added. Though the basis set could be still larger and other terms 
taken into account, we have good hope that our results are reliable. 

(b) concerning the perturbative method, there is no doubt  that this procedure 
provides a good understanding of the phenomena. It has been commonly 
assumed that a perturbative treatment limited to lower order terms can give a 
good description of intermolecular interactions. Many approximate proce- 
dures are based on this idea and it can be very useful to perform ab initio cal- 
culations to test the validity of such approximations; 
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